OLIGOMYCIN E, A NEW ANTITUMOR ANTIBIOTIC PRODUCED BY STREPTOMYCES SP. MCI-2225

KOJI KOBAYASHI and CHIKAO NISHINO

Mitsubishi-Kasei Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo 194, Japan

> JUNICHI OHYA, SHIGERU SAT O and Takashi Mikawa

Research Center, Mitsubishi Chemical Industries Ltd., 1000 Kamoshida, Midori-ku, Yokohama 227, Japan

YOSHINORI SHIOBARA, MITSUAKI KODAMA and Nobushige Nishimoto

Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770, Japan

(Received for publication February 25, 1987)

A new oligomycin, oligomycin E (1), and known oligomycins A $(2)^{1}$ and B $(3)^{2}$, were obtained from the culture broth of *Streptomyces* sp. MCI-2225 as cytotoxic compounds against HeLa cells (a uterine carcinoma cell).

This paper reports the fermentation, isolation and structure of oligomycin E (1). Since no report has been made on cytotoxicity of oligomycins [A (2), B (3), C (4)¹⁾, D (rutamycin) (5)^{3,4)} and rutamycin B (6)⁵⁾] against HeLa cells, this paper also deals with the cytotoxicity of 1 and $2 \sim 4$ in addition to their antibacterial and antifungal activities.

Microorganisms

Streptomyces sp. MCI-2225 was isolated from a soil of Tasmania, Australia. Morphological, cultural and physiological characteristics of this strain will be described in detail elsewhere.

Fermentation

Streptomyces sp. MCI-2225 on an agar slant was inoculated on a seed medium (40 ml) in a 200-ml Erlenmeyer flask. The seed medium (pH 7.0) was composed of maltose syrup 4%, soybean oil 0.3%, soybean meal 2%, Fermamedia 1%, Sungrowth L (Sungrowth Co., Osaka) 0.5%, CaCO₃ 0.3%, FeSO₄·7H₂O 0.001%, CoCl₂·6H₂O 0.0001% and NiCl₂·6H₂O 0.0001%. The flasks were incubated on a rotary shaker (210 rpm) for 4 days at 26° C. The seed culture was transferred into the medium described above in a 500-ml Erlenmeyer flask, and the flasks were incubated on a rotary shaker (210 rpm) for 6 days at 28° C.

Biological Assay

Using oligomycin E (1) and oligomycins A, B and C $(2 \sim 4)$ obtained commercially (Sigma, St. Louis), the following biological assays were carried out.

For cytotoxicity against HeLa S_3 cells, the method was essentially according to that of MIRABELLI *et al.*⁽⁶⁾. MIC values for antibacterial activity against the bacteria shown in Table 4 were determined by the standard agar dilution method. Antifungal activity against *Pyricularia oryzae* F67-54 (rice blast disease fungus) was evaluated by the method of AKATSUKA *et al.*⁽⁷⁾.

Isolation

The isolation procedure was monitored by cytotoxicity against HeLa cells. The filtered broth (10.8 liters) adjusted to pH 9.0 was extracted with EtOAc (5 liters \times 2). A brown paste (7.9 g) from the concentrated extract was chromatographed over Silica gel (Merck, Kieselgel 60, 400 g) eluting with a CHCl₃ - MeOH mixture (95; 5). The active fractions were combined, and concentrated to give a yellowish oil (5.1 g). Two hundred and fifty mg of the oil was applied on a Pre-sep C18 cartridge (Gasukuro Kogyo Co., Tokyo), and eluted successively with 15 ml each of 20%, 75% and 100% MeOH. This procedure was repeated twenty times to separate all of the yellowish oil. The concentrate of the active 75% MeOH fractions gave a colorless oily residue (424 mg), which was finally purified by HPLC (column: 10.7×250 mm packed with Unisil Q C18 (5 µm) (Gasukuro Kogyo Co.); eluent: 80% acetonitrile; flow rate: 5 ml/minute. Components with retention times of 7.9, 9.6 and 12.5 minutes were active, and gave oligomycin E (1) (76 mg), compounds I (3) (73 mg) and II (2) (60 mg), respectively by concentration. Oligomycin E (1) was colorless plates (52 mg) (recrystallized from EtOH). Compounds I (3) (58 mg) and II (2) (48 mg) were colorless prisms when recrystallized from MeOH-water.

Structure

The physico-chemical properties of oligomycin

 $R_2 = CH_3$, Oligomycin E (1) $R_1 = OH$, $R_3 = OH$, $R_4 = O$ Oligomycin A (2) $R_1 = OH$, $R_2 = CH_3$, $R_3 = H$, $R_4 = H_2$ Oligomycin B (3) $R_1 = OH$, $R_2 = CH_3$, $R_3 = H$, $R_4 = O$ Oligomycin C (4) $R_1 = H$, $R_2 = CH_3$, $R_3 = H$, $R_4 = H_2$ Oligomycin D (5) $R_1 = OH$, $R_2 = H$, $R_3 = H$, $R_4 = H_2$ Rutamycin B (6) $R_1 = H$, $R_2 = H$, $R_3 = H$, $R_4 = H_2$

Table 1. Physico-chemical properties of oligomycin E (1).

 Nature	Neutral, colorless plates	
MP (°C)	120.5~121.5	
[α] ² 5	-49.1° (c 1.05, dioxane)	
Formula	$C_{45}H_{72}O_{13}$	
Anal Calcd for $C_{45}H_{72}O_{13} \cdot H_2O$:	С 64.42, Н 8.89.	
Found:	С 64.46, Н 9.12.	
FAB-MS (m/z)	821 (M+H) ⁺	
UV λ_{\max}^{MeOH} nm (ε)	219 (sh), 224 (29,100), 232 (27,100), 240 (sh)	
IR $\nu_{\rm max}^{\rm KBr}$ cm ⁻¹	3456, 1703, 1644	

E (1) is summarized in Table 1. The molecular formula of 1 was determined to be $C_{45}H_{72}O_{13}$ by fast atom bombardment mass specturm (FAB-MS) ((M+H)⁺ m/z 821) and elemental analysis.

The IR spectrum of 1 indicated the existence of hydroxyl (3456 cm⁻¹) and carbonyl (1703 cm⁻¹) groups. The conjugated diene system was indicated by the IR (1644 cm⁻¹) and UV(λ_{max}^{MeOH} 224 nm) spectra¹). These spectral properties suggested 1 to be an oligomycin.

In the ¹H and ¹³C NMR spectra, similar signal patterns were observed between 1 and oligomycin B (3). The comparison of the NMR data between 1 and 3 (see Tables 2 and 3), especially the following signals, led us to determine the structure of 1 as 26-hydroxyoligomycin B (Fig. 1): ¹H NMR, 25-H: d in 1 vs. dd in 3; 26-H: No signal in 1 vs. dq in 3; 44-H₃: s in 1 vs. d in 3; ¹³C NMR, C-26: δ 74.05 in 1 vs. δ 31.27 in 3; C-44: δ 21.52 in 1 vs. δ 11.69 in 3.

The relative stereochemistry of the bicyclic spiroketal moiety of **1** (Fig. 1) was confirmed by the two-dimensional homonuclear nuclear Overhauser effect correlation spectroscopy (NOECOSY) experiment. Cross peaks were observed between: 23-H and 25-H; 23-H and 31-H; 24-H and 25-H; and 25-H and 44-H₃, but no cross peak between 43-H₃ and 44-H₃. Oligomycin E (1) is the first oligomycin having an oxidized C-26.

Compounds I and II were respectively identified as oligomycins B (3) and A (2) by comparison of their physico-chemical properties (mp, $[\alpha]_{n}$, IR, UV and NMR) with those of the authentic specimens.

Biological Activities

Biological activities of the oligomycins are listed in Table 4. The order of cytotoxic potency (IC_{50}) against HeLa cells is 2>1=3>4. 1 is effective

Desition	Chemical shift ^a (J, Hz)			
Position	1	3		
2	5.89 (d, 15.4)	5.84 (d, 15.4)		
3	7.00 (dd, 15.4, 9.8)	6.69 (dd, 15.4, 10.2)		
4	2.42 (ddd, 9.8, 9.8, 6.8)	2.40 (ddd, 10.3, 10.2, 6.8)		
5	3.83 (d, 9.8)	3.81 (d, 10.3)		
6	2.86 (q, 7.3)	2.76 (q, 6.8)		
8	2.72 (qd, 7.3, 3.5)	2.76 (qd, 7.3, 3.0)		
9	4.14 (dd, 8.9, 3.5)	3.99 (dd, 8.4, 3.0)		
10	3.63 (dq, 8.9, 6.8)	3.65 (dq, 8.4, 6.8)		
13	3.90 (s)	3.93 (s)		
14	1.91 ^b	1.87 ^b		
15	2.01 (ddd, 14.0, 10.9, 10.9), 2.20	2.06 (ddd, 14.0, 11.0, 11.0), 2.15		
16	5.48 (ddd, 14.4, 10.9, 3.8)	5.45 (ddd, 13.9, 11.0, 3.7)		
17	6.06 (dd, 14.4, 11.0)	6.05 (dd, 13.9, 11.0)		
18	5.95 (dd, 14.6, 11.0)	5.94 (dd, 14.6, 11.0)		
19	5.23 (dd, 14.6, 9.5)	5.18 (dd, 14.6, 9.5)		
20	1.87 ^b	1.84 ^b		
21	1.41 ^b , 1.63 ^b	$1.34^{\rm b}, 1.61^{\rm b}$		
22	1.16 ^b . 1.73 ^b	1.08 ^b , 1.63 ^b		
23	4.18 (br d. 10.0)	4.05 ^b		
24	2.16 ^b	2.15 ^b		
25	5.00 (d. 5.9)	4.95 (dd. 11.7. 5.1)		
26		2.53 (dg. 11.7. 6.8)		
29	2.18.3.18 (dd. 14.2.5.6)	2.18.3.04 (dd. 14.7.5.9)		
30	2.30 ^b	2.20 ^b		
31	4.53 (br d. 10.2)	4.53 (d. 10.8)		
32	$1.44^{\circ}, 1.65^{\circ}$	1.38 ^b , 1.70 (ddd, 13.7, 10.8, 2.2)		
33	4.03 ^b	4.08 ^b		
34	1.28 (d. 6.8)	1.29 (d. 6.8)		
35	1.21 (d. 6.8)	1.19 (d, 6.8)		
36	1.04 (d. 7.3)	1.04 (d, 6.8)		
37	1.06(d, 7.3)	1.07 (d, 7.3)		
38	1.08 (d, 6.8)	1.09 (d, 6.8)		
39	1.14 (s)	1.13 (s)		
40	1.01 (d. 7.3)	1.01 (d. 6.8)		
41	1.30 ^b . 1.44 ^b	1.28 ^b . 1.40 ^b		
42	0.85 (t. 7.3)	0.84(t, 7.3)		
43	1.07 (d. 6.8)	0.86 (d. 6.8)		
44	1.29 (s)	0.87 (d. 6.8)		
15	0.98(d.7.3)	0.96(d.7.3)		

Table 2. ¹H NMR data of oligomycins E (1) and B (3) (400 MHz, CDCl₃).

^a Chemical shift in ppm from TMS.

^b These signals are with unreadable coupling constants because of overlapping with other signals.

-: No signal.

against Gram-positive bacteria, which is different from the other oligomycins. However, all the oligomycins are inactive against Gram-negative bacteria. Although 2, 3 and 4 show significant antifungal activity (IC₅₀) against *Pyricularia* oryzae, 1 exhibits weak activity (34% inhibition at 100 μ g/ml). The order of the antifungal potency is $4 \ge 2 > 3 \gg 1$. These activity orders in the cytotoxicity and antifungal activity suggest that there are some relationships between the activities and the oxidation level at C-12, C-26 and C-28.

No report has been seen on antibacterial activity of the known oligomycins, but C-26 oxidized oligomycin E (1) is active against Gram-positive bacteria.

From these activity-oxidation level relation-

Position	1	3	Position	1	3
1	165.44	165.19	24	35.59	35.80
2	122.03	122.47	25	74.20	75.84
3	150.03	148.91	26	74.05	31.27
4	40.43	40.29	27	97.64	100.15
5	73.14	73.01	28	207.89	203.21
6	45.17	46.41	29	45.03	44.11
7	219.77	220.05	30	37.98	37.04
8	46.30	46.03	31	68.01	67.18
9	72.51	72.74	32	41.49	41.70
10	42.11	41.92	33	64.31	64.58
11	220.80	220.36	34	25.11	25.03
12	83.04	83.11	35	17.96	17.94
13	72.51	72.04	36	9.06	9.37
14	33.53	33.66	37	8.64	8.42
15	38.47	38.38	38	14.00	14.02
16	129.77	129.92	39	21.18	21.10
17	132.27	132.23	40	14.44	14.58
18	130.56	130.68	41	28.53	28.71
19	137.38	137.16	42	12.12	12.14
20	45.92	46.15	43	8.61	5.97
21	31.23	31.19	44	21.52	11.69
22	30.37	30.78	45	12.67	12.81
23	70.94	71.15			

Table 3. ¹³C NMR data of oligomycins E (1) and B (3) (100 MHz, CDCl₈).

Chemical shift in ppm from TMS.

Table 4. Biological activities of oligomycins E (1), A (2), B (3) and C (4).

Organism	1	2	3	4	
	IC ₅₀ (µg/ml) ^a				
Uterine carcinoma cell					
HeLa S ₃	0.014	0.008	0.015	0.10	
	MIC (µg/ml)				
Bacteria					
Staphylococcus aureus FDA 209PJC 1	6.25	>100	>100	>100	
S. aureus Terajima	12.5	>100	>100	>100	
S. aureus MS353	12.5	>100	>100	>100	
Bacillus subtilis ATCC 6633	100	>100	>100	>100	
Micrococcus luteus ATCC 9341	25	>100	>100	>100	
Escherichia coli NIHJ JC 2	>100	>100	>100	>100	
Klebsiella pneumoniae PCI 602	>100	>100	>100	>100	
Salmonella typhimurium IID 971	>100	>100	>100	>100	
Serratia marcescens IAM 1184	>100	>100	>100	>100	
Pseudomonas aeruginosa IFO 3445	>100	>100	>100	>100	
Morganella morganii IFO 3848	>100	>100	>100	>100	
Proteus vulgaris HX 19	>100	>100	>100	>100	
Providencia rettgeri IFO 3850	>100	>100	>100	>100	
Enterobacter aerogenes ATCC 13048	>100	>100	>100	>100	
	IC ₅₀ (µg/ml) ^b				
Rice blast fungus					
Pyricularia oryzae F67-54	131	3.5	16.9	2.2	

^a Concentration causing 50% inhibition of cell growth.

^b Concentration causing 50% inhibition of spore germination.

ships, the oxidation level at C-12, C-26 and C-28 is expected to be an important structural factor for various biological activities and to be related to the activity-hydrophilicity relationships.

Acknowledgments

We thank Dr. HIROFUMI TOMITA, Mitsubishi Chemical Industries Ltd., for supplying *Pyricularia oryzae*, and Ms. MASAKO FUKUSHIMA, Mitsubishi-Kasei Institute of Life Sciences, for the antifungal test.

References

- CARTER, G. T.: Structure determination of oligomycins A and C. J. Org. Chem. 51: 4264~ 4271, 1986
- von GLEHN, M.; R. NORRESTAM, P. KIERK-EGAARD, L. MARON & L. ERNSTER: Threedimensional structure of oligomycin B. FEBS Lett. 20: 267~269, 1972
- THOMPSON, R. Q.; M. M. HOEHN & C. E. HIGGENS: Crystalline antifungal antibiotic isolated from a strain of *Streptomyces rutger*-

sensis. Antimicrob. Agents Chemother. -1961: 474~480, 1962

- 4) ARNOUX, B.; M. C. GARCIA-ALVAREZ, C. MARAZANO, B. C. DAS, C. PASCARD, C. MERIENNE & T. STARON: X-ray structure of the antibiotic rutamycin. J. Chem. Soc. Chem. Commun. 1978: 318 ~ 319, 1978
- WUTHIER, D.; W. KELLER-SCHIERLEIN & B. WAHL: Stoffwechselprodukte von Mikroorganismen. Isolierung und Strukturaufklärung von Rutamycin B. Helv. Chim. Acta 67: 1208~1216, 1984
- 6) MIRABELLI, C. K.; H. BARTUS, J. O. L. BARTUS, R. JOHNSON, S. M. MONG, C. P. SUNG & S. T. CROOKE: Application of a tissue culture microtiter test for the detection of cytotoxic agents from natural products. J. Antibiotics 38: 758~766, 1985
- AKATSUKA, T.; O. KODAMA, H. SEKIDO, Y. KONO & S. TAKEUCHI: Novel phytoalexins (oryzalexins A, B and C) isolated from rice blast leaves infected with *Pyricularia oryzae*. Part I: Isolation, characterization and biological activities of oryzalexins. Agric. Biol. Chem. 49: 1689~1694, 1985